Colloidal Magnetic Silica Microspheres
 

  • CV< 5%;

  • Roundness > 0.980;

  • Density: ~2.5 g/cm3;

  • Saturation magnetization: ~20 emu/g;

  • Provided in Milli-Q water;

  • Superparamagnetic cores covered by the silica shells;

  • Surface functional group: -OH available for all sizes and -NH2 and -COOH available for 1 μm;

  • Concentrations available: 10 - 50 mg/ml (i.e. 1 - 5 % w/v);

  • Sizes available: 1 μm, 2 μm, 5 μm, 10 μm, and 50 μm;

  • Lifetime: At least 2 years from the date of product delivery;

  • These magnetic silica beads can be easily surface functionalized via chemical bond formation;

  • Can be adapted to other common biological buffers like phosphate-buffered saline (PBS) or organic solvents like ethanol via repeated centrifugation and resuspension;

  • The magnetic silica microspheres might precipitate at the bottom of the containing vial over time, and this is not a sign of aggregation. Large particles precipitate faster than small particles. These particles can be easily resuspended using sonication (ultrasonic bath or ultrasonic homogenizer) or vortexing;

  • Our magnetic silica beads are only priced based on the solid content; for instance, 50 ml of the silica nanospheres at 10mg/ml would have the same price as 10 ml of the silica nanospheres at 50 mg/ml.

Safety Data Sheets

Magnetic Responsiveness​

Fully suspended microspheres when they are away from the magnetic field

Aggregated microspheres at the poles when they are in the magnetic field

Our colloidal magnetic silica microspheres respond to the magnetic field, enabling many laboratory and commercial applications. These microspheres can be repetitively used and easily coupled with other surface moieties for further functionalizations. 

Scanning Electron Micrographs

1 μm

2 μm

5 μm

10 μm

50 μm

 Zeta Potential Measurements

Fourier-transform infrared spectroscopy (FTIR) measurement results

How do we measure the CV Values and reveal the real size distributions?

Through the years of working with nano-/microspheres, our researchers and technicians fully understand the importance of the size distributions from batch to batch. In the field of size characterizations, there are mainly two methods, scanning/transmission/scanning transmission electron micrographs (SEM/TEM/STEM) and dynamic light scattering (i.e. DLS). Unfortunately, we found DLS are unsuitable for accurately determine the size distributions of nano-/microspheres when compared to SEM/TEM/STEM techniques. 
 

  • DLS results are closely related to colloidal stability, and as an inevitable result, the size distributions will not be accurate for large-sized nanoparticles. For nanoparticles below 100 nm, the hydrodynamic sizes become relevant. However, for nanoparticles around or above a few hundred nanometers, colloidal stability is greatly affected by the role of gravity. In comparison, the SEM/TEM/STEM images are based on dry samples only where higher reproducibility and reliability have been seen through numerous studies in our case and in the literature.

  • DLS cannot distinguish between nanoparticles themselves and the aggregates of surfactants. As most of our colloidal nano-/microspheres have a trace of surfactants purposely added in the system for longer lifetime, DLS becomes unsuitable for direct size measurements unless the nano-/microspheres are washed at least three times with the Milli-Q water or de-ionized water to fully remove any trace of surfactants. Similarly, the nano-/microspheres due to inefficient re-suspension also distort the DLS results; for instance, a couple of aggregated 100 nm nanoparticles might be seen as 200 nm or 300 nm nanoparticles under DLS measurements.

  • DLS cannot give any insight into the shape or the spherical degree of nano-/microspheres. Irregularly-shaped particles and perfectly spherical particles can be interpreted the same under DLS measurements.

 

As a result, we use SEM/TEM/STEM techniques instead of DLS measurements as our routine quality control method. We routinely take at least 10 electron micrographs and process them with ImageJ for size distributions as well as the CV value. This is also the reason that we typically include a couple of representative SEM/TEM/STEM images with our products when delivered to our clients. We wish to reveal the real size distributions and let the clients visualize the images of nano-/microspheres directly instead of viewing the fitted curves indirectly. 

Daily Exchange Rates
(updated every 12 hr)

Please visit our online store or Amazon stores for instant purchases or place invoiced orders (Net 30) with us. We typically ship out our in-stock items both domestically and internationally within 1 business day after the order placement.

  • Amazon - Black Circle
  • Amazon - Black Circle
  • Amazon - Black Circle
  • Amazon - Black Circle
  • Amazon - Black Circle
  • Amazon - Black Circle
  • Amazon - Black Circle
0

Please note:
 

No duties or additional taxes for the orders delivered to Canadian, the US, the UK, and the EU addresses, regardless of the selected sales channel. The value-added tax (VAT) is zero-rated for EU-based clients with locally registered VAT numbers in Europe; otherwise, 20% UK VAT is charged for orders delivered from the UK to clients based in the EU without the VAT registration. Sales tax is also zero-rated for orders delivered to the US and other international destinations.


Orders destined for Canada will be shipped from the Canadian headquarters.

Orders destined for the US will be shipped from one of our two US offices.

Orders destined for the UK and the EU will be shipped from the UK office.

For other International shipping addresses, the recipients are responsible for local duties and taxes.

  • Facebook Social Icon
  • Pinterest
  • Twitter Social Icon
  • Instagram

© Copyright 2017 - 2019 Alpha Nanotech Inc. All Rights Reserved | Privacy Policy | Terms and Conditions 

   Alpha Nanotech Inc. is registered in Canada and the United Kingdom | VAT number: GB 311521654